Indian Statistical Institute Back Paper Examination Topology I - MMath I

Max Marks: 100

Time: 180 minutes.

Answer all questions. You may use Theorems stated/proved in the class after correctly stating them. You may use results not discussed in the class only after proving them.

- (1) Let \mathbb{R}_d denote the real line with the discrete topology. Show that the dictionary order topology on the set $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}$. Compare this topology with the standard topology on \mathbb{R}^2 . [15]
- (2) Let τ be the topology generated by the following collection of subsets of \mathbb{R} : (i) open intervals (a, b) and (ii) sets of the form (a, b) K where $K = \{1/n\}_{n \ge 1}$. Then,
 - (a) Is (\mathbb{R}, τ) connected?
 - (b) Is [0,1] compact as a subspace of (\mathbb{R},τ) ?
 - (c) Is (\mathbb{R}, τ) path connected?

[15]

- (3) Show that the product topology on $\mathbb{R}^{\mathbb{N}}$ is metrizable. [10]
- (4) Let A and B be disjoint compact subspaces of a Hausdorff space X. Show that there exist disjoint open subsets U and V containing A and B respectively. [10]
- (5) When do you say a space is regular? Show that a space X is regular if and only if given a point x of X and a neighbourhood U of x, there exists a neighbourhood V of x such that $\overline{V} \subseteq U$. Show that an arbitrary product of regular spaces is regular. [2+8+10]
- (6) State the Urysohn lemma. Show that every connected normal space X with more than one point is uncountable. [2+8]
- (7) Define the terms : homotopy equivalence, contractible, deformation retract. [2+2+2]
- (8) Show that a space X is contractible if and only if the constant map $f: X \longrightarrow \{*\}$ to a one point space is a homotopy equivalence. [7]
- (9) Show that S^n , $n \ge 1$ is a deformation retract of $\mathbb{R}^{n+1} \{0\}$. [7]